CYLINDER HIGH-STABILITY CRYSTAL UNIT

CA-303HS

- High-stability in a dia. 3 mm cylindrical package.
- Small package allows high-density mounting and less weight.
- Excellent shock resistance and environmental capability.
- High-stability with tight vacuum sealing and AT-cut single side mounting structure.
- Suitable for small telecommunication equipment.

Specifications (characteristics)

Item		Symbol	Specifications	Remarks
Nominal frequency range		f	9.600 MHz to 27.000 MHz	Fundamental mode
Temperature range	Storage temperature	Tstg	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	Operating temperature	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Drive level	Maximum drive level	GL	2 mW Max.	Only crystal oscillation is guaranteed
	Recommended drive level	DL	$10 \mu \mathrm{~W}$ to $100 \mu \mathrm{~W}$	
Soldering condition (reflow)		Tsol	$+240^{\circ} \mathrm{C}$ Max. within 10 S and under $+200^{\circ} \mathrm{C}$ within 40 s	
Frequency tolerance (standard)		$\Delta \mathrm{f} / \mathrm{f}$	$\pm 10 \times 10^{-6}$	$\mathrm{Ta}=+25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \mathrm{DL}=100 \mu \mathrm{~W}$
Frequency temperature characteristics			As per below table	
Load capacitance		CL	10 pF to ∞	Please specify
Series resistance		R1	As per below table	Operable temperature range, $\mathrm{DL}=100 \mu \mathrm{~W}$
Shunt capacitance		Co	3.0 pF Max.	
Insulation resistance		IR	$500 \mathrm{M} \Omega$ Min.	
Aging		fa	$\pm 1 \times 10^{-6} /$ year Max.	$\mathrm{Ta}=+25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}, 100 \mu \mathrm{~W}$
Shock resistance		S.R.	$\pm 1 \times 10^{-6} \mathrm{Max}$.	Three drops on a hard wooden board from 750 mm or excitation test with $29400 \mathrm{~m} / \mathrm{s}^{2} \times 0.3 \mathrm{~ms} \times 1 / 2$ sine wave $x 3$ directions

Measured values for frequency tolerance and temperature characteristics need to be brought into mutual correlation prior to the start of production.

Frequency temperature characteristics

Temperature range	Frequency tolerance
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 3 \times 10^{-6} \mathrm{Min}$.
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$\pm 5 \times 10^{-6} \mathrm{Min}$.
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 7 \times 10^{-6} \mathrm{Min}$.
$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$\pm 10 \times 10^{-6} \mathrm{Min}$.
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 15 \times 10^{-6} \mathrm{Min}$.

Series resistance

Frequency (MHz)	Series resistance (Ω)
$9.6 \leq \mathrm{f}<10.0$	50Ω Max.
$10.0 \leq \mathrm{f}<12.0$	40Ω Max.
$12.0 \leq \mathrm{f}<16.0$	30Ω Max.
$16.0 \leq \mathrm{f} \leq 27.0$	25Ω Max.

